trigonometric expressions reciprocal identity cos(pi/2 - X) = sinX sec(pi/2 - X) = cscX cos(x)= 1/sec(x) tan(pi/2 - X) = cotX tan2(t) + 1 = sec2(t) cos(- x)=cosx csc(pi/2 - X) = secX cot(- x)= - cotx sin(- x)=- sinx csc(- x)= - cscx Quotient identity sin(pi/2 - X) = cosX sec(x)= 1/cos(x) common denominator tan(x)= cot(x) 1 = cos(x) sin(x) identity sin2(t) + cos2(t) = 1 odd- even identity sec(- x)= secx cot(pi/2 - X) = tanX confuntion Pythagorean identities 1 + cot2(t) = csc2(t) conjugate tan(- x)= - tanx sin(x)= 1/csc(x) trigonometric identities trigonometric expressions reciprocal identity cos(pi/2 - X) = sinX sec(pi/2 - X) = cscX cos(x)= 1/sec(x) tan(pi/2 - X) = cotX tan2(t) + 1 = sec2(t) cos(- x)=cosx csc(pi/2 - X) = secX cot(- x)= - cotx sin(- x)=- sinx csc(- x)= - cscx Quotient identity sin(pi/2 - X) = cosX sec(x)= 1/cos(x) common denominator tan(x)= cot(x) 1 = cos(x) sin(x) identity sin2(t) + cos2(t) = 1 odd- even identity sec(- x)= secx cot(pi/2 - X) = tanX confuntion Pythagorean identities 1 + cot2(t) = csc2(t) conjugate tan(- x)= - tanx sin(x)= 1/csc(x) trigonometric identities
(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.
trigonometric expressions
reciprocal identity
cos(pi/2 - X) = sinX
sec(pi/2 - X) = cscX
cos(x)=
1/sec(x)
tan(pi/2 - X) = cotX
tan2(t) + 1 = sec2(t)
cos(-x)=cosx
csc(pi/2 - X) = secX
cot(-x)= -cotx
sin(-x)=-sinx
csc(-x)= -cscx
Quotient identity
sin(pi/2 - X) = cosX
sec(x)=
1/cos(x)
common denominator
tan(x)=
cot(x)
1
=
cos(x)
sin(x)
identity
sin2(t) + cos2(t) = 1
odd-even identity
sec(-x)= secx
cot(pi/2 - X) = tanX
confuntion
Pythagorean identities
1 + cot2(t) = csc2(t)
conjugate
tan(-x)= -tanx
sin(x)=
1/csc(x)
trigonometric
identities