sin(x)=1/​csc(x) ​​cos(-x)=cosx1 +cot2(t) =csc2(t)Quotientidentitycsc(pi/2- X) =secXtan2(t)+ 1 =sec2(t)reciprocalidentitytrigonometricexpressionscot(pi/2- X) =tanXtan(x)=​cot(x)​1​​ =​cos(x)​sin(x)​​conjugatecos(pi/2- X) =sinXsec(x)=1/​cos(x) ​​confuntionsin2(t) +cos2(t)= 1odd-evenidentitycos(x)=1/​sec(x) ​​sin(-x)=-sinxcot(-x)= -cotxcsc(-x)= -cscxtan(pi/2- X) =cotXcommondenominatortan(-x)= -tanxsin(pi/2- X) =cosXidentityPythagoreanidentitiestrigonometricidentitiessec(pi/2- X) =cscXsec(-x)=secxsin(x)=1/​csc(x) ​​cos(-x)=cosx1 +cot2(t) =csc2(t)Quotientidentitycsc(pi/2- X) =secXtan2(t)+ 1 =sec2(t)reciprocalidentitytrigonometricexpressionscot(pi/2- X) =tanXtan(x)=​cot(x)​1​​ =​cos(x)​sin(x)​​conjugatecos(pi/2- X) =sinXsec(x)=1/​cos(x) ​​confuntionsin2(t) +cos2(t)= 1odd-evenidentitycos(x)=1/​sec(x) ​​sin(-x)=-sinxcot(-x)= -cotxcsc(-x)= -cscxtan(pi/2- X) =cotXcommondenominatortan(-x)= -tanxsin(pi/2- X) =cosXidentityPythagoreanidentitiestrigonometricidentitiessec(pi/2- X) =cscXsec(-x)=secx

Unit 3, 5.1 - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. sin(x)= 1/​csc(x) ​ ​​
  2. cos(-x)=cosx
  3. 1 + cot2(t) = csc2(t)
  4. Quotient identity
  5. csc(pi/2 - X) = secX
  6. tan2(t) + 1 = sec2(t)
  7. reciprocal identity
  8. trigonometric expressions
  9. cot(pi/2 - X) = tanX
  10. tan(x)= ​cot(x) ​ ​1 ​​ = ​cos(x) ​ ​sin(x) ​​
  11. conjugate
  12. cos(pi/2 - X) = sinX
  13. sec(x)= 1/​cos(x) ​ ​​
  14. confuntion
  15. sin2(t) + cos2(t) = 1
  16. odd-even identity
  17. cos(x)= 1/​sec(x) ​ ​​
  18. sin(-x)=-sinx
  19. cot(-x)= -cotx
  20. csc(-x)= -cscx
  21. tan(pi/2 - X) = cotX
  22. common denominator
  23. tan(-x)= -tanx
  24. sin(pi/2 - X) = cosX
  25. identity
  26. Pythagorean identities
  27. trigonometric identities
  28. sec(pi/2 - X) = cscX
  29. sec(-x)= secx