sin(x)= 1/csc(x) cos(- x)=cosx 1 + cot2(t) = csc2(t) Quotient identity csc(pi/2 - X) = secX tan2(t) + 1 = sec2(t) reciprocal identity trigonometric expressions cot(pi/2 - X) = tanX tan(x)= cot(x) 1 = cos(x) sin(x) conjugate cos(pi/2 - X) = sinX sec(x)= 1/cos(x) confuntion sin2(t) + cos2(t) = 1 odd- even identity cos(x)= 1/sec(x) sin(- x)=- sinx cot(- x)= - cotx csc(- x)= - cscx tan(pi/2 - X) = cotX common denominator tan(- x)= - tanx sin(pi/2 - X) = cosX identity Pythagorean identities trigonometric identities sec(pi/2 - X) = cscX sec(- x)= secx sin(x)= 1/csc(x) cos(- x)=cosx 1 + cot2(t) = csc2(t) Quotient identity csc(pi/2 - X) = secX tan2(t) + 1 = sec2(t) reciprocal identity trigonometric expressions cot(pi/2 - X) = tanX tan(x)= cot(x) 1 = cos(x) sin(x) conjugate cos(pi/2 - X) = sinX sec(x)= 1/cos(x) confuntion sin2(t) + cos2(t) = 1 odd- even identity cos(x)= 1/sec(x) sin(- x)=- sinx cot(- x)= - cotx csc(- x)= - cscx tan(pi/2 - X) = cotX common denominator tan(- x)= - tanx sin(pi/2 - X) = cosX identity Pythagorean identities trigonometric identities sec(pi/2 - X) = cscX sec(- x)= secx
(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.
sin(x)=
1/csc(x)
cos(-x)=cosx
1 + cot2(t) = csc2(t)
Quotient identity
csc(pi/2 - X) = secX
tan2(t) + 1 = sec2(t)
reciprocal identity
trigonometric expressions
cot(pi/2 - X) = tanX
tan(x)=
cot(x)
1
=
cos(x)
sin(x)
conjugate
cos(pi/2 - X) = sinX
sec(x)=
1/cos(x)
confuntion
sin2(t) + cos2(t) = 1
odd-even identity
cos(x)=
1/sec(x)
sin(-x)=-sinx
cot(-x)= -cotx
csc(-x)= -cscx
tan(pi/2 - X) = cotX
common denominator
tan(-x)= -tanx
sin(pi/2 - X) = cosX
identity
Pythagorean identities
trigonometric
identities
sec(pi/2 - X) = cscX
sec(-x)= secx