Estimatetwo-sidedlimitsOne-sidedlimitsInfinitelimitsF(x) increasesor decreaseswithout boundfrom the leftand/or the rightof cF(x)approachesLlimf(x)=L1UniquenumberOutputsInfiniteoscillationsNegativeinfinitylimf(x)=L2LimitXapproachesCWithoutboundlimit is aboutwhat happensnear or closeto that numberExistenceof a limitat a pointTwo-sidedlimitlimf(x)=negativeinfinitylimf(x)=infinityOscillatesTablesLimitsatinfinityRight-handlimitFunctionEstimateone-sidedlimitsF(x)oscillatesbetween twofixed valuesIndependenceof limit fromfunction valueat pointF(x)approaches adifferent valuefrom the left ofc than from therightFail toexistlim1/xExistUnboundedbehaviorOscillatingbehaviorSupportnumericallyVerticalasymptoteInfinityLeft-handlimitGraphicallyHorizontalasymptotelimf(x)=LEstimatetwo-sidedlimitsOne-sidedlimitsInfinitelimitsF(x) increasesor decreaseswithout boundfrom the leftand/or the rightof cF(x)approachesLlimf(x)=L1UniquenumberOutputsInfiniteoscillationsNegativeinfinitylimf(x)=L2LimitXapproachesCWithoutboundlimit is aboutwhat happensnear or closeto that numberExistenceof a limitat a pointTwo-sidedlimitlimf(x)=negativeinfinitylimf(x)=infinityOscillatesTablesLimitsatinfinityRight-handlimitFunctionEstimateone-sidedlimitsF(x)oscillatesbetween twofixed valuesIndependenceof limit fromfunction valueat pointF(x)approaches adifferent valuefrom the left ofc than from therightFail toexistlim1/xExistUnboundedbehaviorOscillatingbehaviorSupportnumericallyVerticalasymptoteInfinityLeft-handlimitGraphicallyHorizontalasymptotelimf(x)=L

Section 12-1 - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
  1. Estimate two-sided limits
  2. One-sided limits
  3. Infinite limits
  4. F(x) increases or decreases without bound from the left and/or the right of c
  5. F(x) approaches L
  6. limf(x)=L1
  7. Unique number
  8. Outputs
  9. Infinite oscillations
  10. Negative infinity
  11. limf(x)=L2
  12. Limit
  13. X approaches C
  14. Without bound
  15. limit is about what happens near or close to that number
  16. Existence of a limit at a point
  17. Two-sided limit
  18. limf(x)=negative infinity
  19. limf(x)=infinity
  20. Oscillates
  21. Tables
  22. Limits at infinity
  23. Right-hand limit
  24. Function
  25. Estimate one-sided limits
  26. F(x) oscillates between two fixed values
  27. Independence of limit from function value at point
  28. F(x) approaches a different value from the left of c than from the right
  29. Fail to exist
  30. lim1/x
  31. Exist
  32. Unbounded behavior
  33. Oscillating behavior
  34. Support numerically
  35. Vertical asymptote
  36. Infinity
  37. Left-hand limit
  38. Graphically
  39. Horizontal asymptote
  40. limf(x)=L