DarkDataInformation assetsthat org collects,processes and storesin the course ofregular businessactivity but generallyfails to use for otherpurposesDataDocumentationProcess oforganizing howdata is collected,processed andanalyzed - used toensure dataqualityDataDocumentation &DataPolicies/StandardsTwo functionalprocesses financeis responsible forproviding a basis forInformation Security SupervisedLearningDS train the machinewith labeled data ordata already taggedwith a correctanswer(IErecognition of apattern of :user" inputbehavior - think bots)OLAPcubesDownstreamprocessinglocations sometraditional BIplatformsconcurrent to aDataWarehousseDataMartSpecializedRepositoryorganized for asingle categoryof analysis.DataMistrustLack of claritysurrounding theorigins, meaningor uses of differentdata setsDataScientistResponsible forbuilding predictiveand prescriptivemodels for futurescenarios andrecommending bestcourse of actionDataGlossaryStoresoperational andbusinessdefinitiions forcritical dataelementsBIDIManagesYelp DW andtableauexpertsDataAnalystResponsiblefor derivingbusinessinsights fromdataBusinessSystemAnalystsProvidestechnicalsupport andsystem analysisto FPADataCataloguesInventories of distributeddata assets acting as theinterface for data discoveryThey maintain an inventoryof data assets through thediscovery, discription, andorganization of data setsAugmentedData PrepToolsUses ML models to morerapidaly repare data foranalytic use - dataprofiling/data quality,harmonizationn, datamdeling, manipulation,enrichment/interference,metadata deceolpment,and data catalogingDataTaxonomyClassification of dataaccording to categoryand subcategorycomprising astandardized set ofdefinitions and metricsused throughout theenterpriseFunctionalDataManagementEnables the basiclevel of data qualityand consistencyneeded to derivevalue from data forpurposes specific tothe finance functionBIDeveloper Responsible fordeveloping BIReports, dashboardsand analysespublished for othersto consumeDataHubConceptualframework or setof processes thatconnect datasources and usersDataLakeRepository thatpools dataunmodified fromits original form orsource forexploratoryanalysisIronMountainCompany thatcreated ML pilot inAR without DataScientists or ITsupport thatdecreased time tosettlement by 40%DataOwnerResponsible forensuring the dataassets serve theirintended purpose,comply to policiesand standards andcommunicate datavalue DataFlowShows theprocessesand controlsapplied todataMaster DataManagement(MDM)Method for ensuringthe uniformity,accuracy, stewardship,sematic consistencyand accountability ofthe orgs shared dataassets within a singlepoint of refereneDataLineageTraces thesource of thedata and theapplicationsthrough which ithas passedCrossfunctionaldatamanagementCreatestransparency intomultiple potentialdata formats andis used to fostercollaborationMacroDataAggregated orsystem leveldata (IEdemographicData on peopleor customers)DataLiteracyCompetency to READ,WRITE andCOMMUNICATE data incontext includingunderstanding of datasources and constructs,analytical methods andtechniques applied andability to describe data'suse and application and itsresulting valuesUnsupervisedLearningML works on its ownto discoverinformation byworking with unlableddata or not taggedwith a right or wronganswer (IE topicmodling or clustering)Analyticsand BIArchitectureAllows financeto transformdata, createvisualizationsand outputanalyticsCitizenDataScientistResponsiblle forexecuting analyticsacross the enterprisewithout beingformally trained,supported bytechnology like smartdata discovery toolsDataHygieneIncludes: Usability,precision, Timeliness,Accuracy, noduplication, real-time,validity, consistency,completeness GDPREU law on dataprotection andprivacy in theEuropean Union (EU)and the EuropeanEconomic Area(EEA)DataWarehouseStorage architecturedesigned to hold dataextracted fromtransaction systems,operational datastores and externalsourcesETLScheduled nightly,hourly or daily, refersto the process ofextracting data fromsources, transformingis and loading it intoa target location inbatchesDataIntegrationandExtractionProcess of obtaining ,importing, andprocessing data forlater use/Tools thatretrieve data fromdata sourcesDataCuratorAnalyticsworkbenchOffers self-serviceanalytics, dataoreparation anddata discoverytoolsReinforementLearningUnsupervised learningwhere machine is is trainedto take action to maximizerewards in a particularsituation, Reacts to positiveevents by increasing ordecreasin strength and freqof its behave (Computerslearning to play games ordireve vehicUpdateScheduleShowsfrequencyand timing ofdata updatesDarkDataInformation assetsthat org collects,processes and storesin the course ofregular businessactivity but generallyfails to use for otherpurposesDataDocumentationProcess oforganizing howdata is collected,processed andanalyzed - used toensure dataqualityDataDocumentation &DataPolicies/StandardsTwo functionalprocesses financeis responsible forproviding a basis forInformation SecuritySupervisedLearningDS train the machinewith labeled data ordata already taggedwith a correctanswer(IErecognition of apattern of :user" inputbehavior - think bots)OLAPcubesDownstreamprocessinglocations sometraditional BIplatformsconcurrent to aDataWarehousseDataMartSpecializedRepositoryorganized for asingle categoryof analysis.DataMistrustLack of claritysurrounding theorigins, meaningor uses of differentdata setsDataScientistResponsible forbuilding predictiveand prescriptivemodels for futurescenarios andrecommending bestcourse of actionDataGlossaryStoresoperational andbusinessdefinitiions forcritical dataelementsBIDIManagesYelp DW andtableauexpertsDataAnalystResponsiblefor derivingbusinessinsights fromdataBusinessSystemAnalystsProvidestechnicalsupport andsystem analysisto FPADataCataloguesInventories of distributeddata assets acting as theinterface for data discoveryThey maintain an inventoryof data assets through thediscovery, discription, andorganization of data setsAugmentedData PrepToolsUses ML models to morerapidaly repare data foranalytic use - dataprofiling/data quality,harmonizationn, datamdeling, manipulation,enrichment/interference,metadata deceolpment,and data catalogingDataTaxonomyClassification of dataaccording to categoryand subcategorycomprising astandardized set ofdefinitions and metricsused throughout theenterpriseFunctionalDataManagementEnables the basiclevel of data qualityand consistencyneeded to derivevalue from data forpurposes specific tothe finance functionBIDeveloper Responsible fordeveloping BIReports, dashboardsand analysespublished for othersto consumeDataHubConceptualframework or setof processes thatconnect datasources and usersDataLakeRepository thatpools dataunmodified fromits original form orsource forexploratoryanalysisIronMountainCompany thatcreated ML pilot inAR without DataScientists or ITsupport thatdecreased time tosettlement by 40%DataOwnerResponsible forensuring the dataassets serve theirintended purpose,comply to policiesand standards andcommunicate datavalue DataFlowShows theprocessesand controlsapplied todataMaster DataManagement(MDM)Method for ensuringthe uniformity,accuracy, stewardship,sematic consistencyand accountability ofthe orgs shared dataassets within a singlepoint of refereneDataLineageTraces thesource of thedata and theapplicationsthrough which ithas passedCrossfunctionaldatamanagementCreatestransparency intomultiple potentialdata formats andis used to fostercollaborationMacroDataAggregated orsystem leveldata (IEdemographicData on peopleor customers)DataLiteracyCompetency to READ,WRITE andCOMMUNICATE data incontext includingunderstanding of datasources and constructs,analytical methods andtechniques applied andability to describe data'suse and application and itsresulting valuesUnsupervisedLearningML works on its ownto discoverinformation byworking with unlableddata or not taggedwith a right or wronganswer (IE topicmodling or clustering)Analyticsand BIArchitectureAllows financeto transformdata, createvisualizationsand outputanalyticsCitizenDataScientistResponsiblle forexecuting analyticsacross the enterprisewithout beingformally trained,supported bytechnology like smartdata discovery toolsDataHygieneIncludes: Usability,precision, Timeliness,Accuracy, noduplication, real-time,validity, consistency,completeness GDPREU law on dataprotection andprivacy in theEuropean Union (EU)and the EuropeanEconomic Area(EEA)DataWarehouseStorage architecturedesigned to hold dataextracted fromtransaction systems,operational datastores and externalsourcesETLScheduled nightly,hourly or daily, refersto the process ofextracting data fromsources, transformingis and loading it intoa target location inbatchesDataIntegrationandExtractionProcess of obtaining ,importing, andprocessing data forlater use/Tools thatretrieve data fromdata sourcesDataCuratorAnalyticsworkbenchOffers self-serviceanalytics, dataoreparation anddata discoverytoolsReinforementLearningUnsupervised learningwhere machine is is trainedto take action to maximizerewards in a particularsituation, Reacts to positiveevents by increasing ordecreasin strength and freqof its behave (Computerslearning to play games ordireve vehicUpdateScheduleShowsfrequencyand timing ofdata updates

YELP Data Literacy (FPA 2022) - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
  1. Information assets that org collects, processes and stores in the course of regular business activity but generally fails to use for other purposes
    Dark Data
  2. Process of organizing how data is collected, processed and analyzed - used to ensure data quality
    Data Documentation
  3. Two functional processes finance is responsible for providing a basis for Information Security
    Data Documentation & Data Policies/Standards
  4. DS train the machine with labeled data or data already tagged with a correct answer(IE recognition of a pattern of :user" input behavior - think bots)
    Supervised Learning
  5. Downstream processing locations some traditional BI platforms concurrent to a DataWarehousse
    OLAP cubes
  6. Specialized Repository organized for a single category of analysis.
    Data Mart
  7. Lack of clarity surrounding the origins, meaning or uses of different data sets
    Data Mistrust
  8. Responsible for building predictive and prescriptive models for future scenarios and recommending best course of action
    Data Scientist
  9. Stores operational and business definitiions for critical data elements
    Data Glossary
  10. Manages Yelp DW and tableau experts
    BIDI
  11. Responsible for deriving business insights from data
    Data Analyst
  12. Provides technical support and system analysis to FPA
    Business System Analysts
  13. Inventories of distributed data assets acting as the interface for data discovery They maintain an inventory of data assets through the discovery, discription, and organization of data sets
    Data Catalogues
  14. Uses ML models to more rapidaly repare data for analytic use - data profiling/data quality, harmonizationn, data mdeling, manipulation, enrichment/interference, metadata deceolpment, and data cataloging
    Augmented Data Prep Tools
  15. Classification of data according to category and subcategory comprising a standardized set of definitions and metrics used throughout the enterprise
    Data Taxonomy
  16. Enables the basic level of data quality and consistency needed to derive value from data for purposes specific to the finance function
    Functional Data Management
  17. Responsible for developing BI Reports, dashboards and analyses published for others to consume
    BI Developer
  18. Conceptual framework or set of processes that connect data sources and users
    Data Hub
  19. Repository that pools data unmodified from its original form or source for exploratory analysis
    Data Lake
  20. Company that created ML pilot in AR without Data Scientists or IT support that decreased time to settlement by 40%
    Iron Mountain
  21. Responsible for ensuring the data assets serve their intended purpose, comply to policies and standards and communicate data value
    Data Owner
  22. Shows the processes and controls applied to data
    Data Flow
  23. Method for ensuring the uniformity, accuracy, stewardship, sematic consistency and accountability of the orgs shared data assets within a single point of referene
    Master Data Management (MDM)
  24. Traces the source of the data and the applications through which it has passed
    Data Lineage
  25. Creates transparency into multiple potential data formats and is used to foster collaboration
    Cross functional data management
  26. Aggregated or system level data (IE demographic Data on people or customers)
    Macro Data
  27. Competency to READ, WRITE and COMMUNICATE data in context including understanding of data sources and constructs, analytical methods and techniques applied and ability to describe data's use and application and its resulting values
    Data Literacy
  28. ML works on its own to discover information by working with unlabled data or not tagged with a right or wrong answer (IE topic modling or clustering)
    Unsupervised Learning
  29. Allows finance to transform data, create visualizations and output analytics
    Analytics and BI Architecture
  30. Responsiblle for executing analytics across the enterprise without being formally trained, supported by technology like smart data discovery tools
    Citizen Data Scientist
  31. Includes: Usability, precision, Timeliness, Accuracy, no duplication, real-time, validity, consistency, completeness
    Data Hygiene
  32. EU law on data protection and privacy in the European Union (EU) and the European Economic Area (EEA)
    GDPR
  33. Storage architecture designed to hold data extracted from transaction systems, operational data stores and external sources
    Data Warehouse
  34. Scheduled nightly, hourly or daily, refers to the process of extracting data from sources, transforming is and loading it into a target location in batches
    ETL
  35. Process of obtaining , importing, and processing data for later use/Tools that retrieve data from data sources
    Data Integration and Extraction
  36. Data Curator
  37. Offers self-service analytics, data oreparation and data discovery tools
    Analytics workbench
  38. Unsupervised learning where machine is is trained to take action to maximize rewards in a particular situation, Reacts to positive events by increasing or decreasin strength and freq of its behave (Computers learning to play games or direve vehic
    Reinforement Learning
  39. Shows frequency and timing of data updates
    Update Schedule