We use theisomorphismtheoremsWe use auniversalpropertyWe assumesomethingfrom apreviousmath classWe do aproof bycontradictionSvetawrites a"slogan"We use thechineseremaindertheoremSveta writesan existsand isuniquesymbolSvetawrites a"warning"We do aninductiveproofWe provesomethingis a ringSvetawrites"iff"We have aring that isnotcommutativeSvetamakes amathmistakeWe usetheinclusionmapSvetawrites"Theorem"Sveta writestheisomorphismsymbolWe usethequotientmapSvetawrites"Prop"Svetamakes agrammaticalmistakeWeprove alemmaWe callsomething"free" (e.g.freemodules)Svetacalls agroup"Abelian"We prove anoperation iswell-definedWe adjoinanelementto a ringWe use theisomorphismtheoremsWe use auniversalpropertyWe assumesomethingfrom apreviousmath classWe do aproof bycontradictionSvetawrites a"slogan"We use thechineseremaindertheoremSveta writesan existsand isuniquesymbolSvetawrites a"warning"We do aninductiveproofWe provesomethingis a ringSvetawrites"iff"We have aring that isnotcommutativeSvetamakes amathmistakeWe usetheinclusionmapSvetawrites"Theorem"Sveta writestheisomorphismsymbolWe usethequotientmapSvetawrites"Prop"Svetamakes agrammaticalmistakeWeprove alemmaWe callsomething"free" (e.g.freemodules)Svetacalls agroup"Abelian"We prove anoperation iswell-definedWe adjoinanelementto a ring

Algebra Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. We use the isomorphism theorems
  2. We use a universal property
  3. We assume something from a previous math class
  4. We do a proof by contradiction
  5. Sveta writes a "slogan"
  6. We use the chinese remainder theorem
  7. Sveta writes an exists and is unique symbol
  8. Sveta writes a "warning"
  9. We do an inductive proof
  10. We prove something is a ring
  11. Sveta writes "iff"
  12. We have a ring that is not commutative
  13. Sveta makes a math mistake
  14. We use the inclusion map
  15. Sveta writes "Theorem"
  16. Sveta writes the isomorphism symbol
  17. We use the quotient map
  18. Sveta writes "Prop"
  19. Sveta makes a grammatical mistake
  20. We prove a lemma
  21. We call something "free" (e.g. free modules)
  22. Sveta calls a group "Abelian"
  23. We prove an operation is well-defined
  24. We adjoin an element to a ring