We do aproof bycontradictionSvetawrites a"slogan"Sveta writestheisomorphismsymbolSvetamakes amathmistakeSvetawrites"Theorem"We usethequotientmapWeprove alemmaSvetawrites a"warning"We usetheinclusionmapSvetamakes agrammaticalmistakeWe assumesomethingfrom apreviousmath classWe adjoinanelementto a ringWe callsomething"free" (e.g.freemodules)We use thechineseremaindertheoremSvetawrites"Prop"We prove anoperation iswell-definedSveta writesan existsand isuniquesymbolWe do aninductiveproofWe use theisomorphismtheoremsSvetawrites"iff"We use auniversalpropertyWe provesomethingis a ringWe have aring that isnotcommutativeSvetacalls agroup"Abelian"We do aproof bycontradictionSvetawrites a"slogan"Sveta writestheisomorphismsymbolSvetamakes amathmistakeSvetawrites"Theorem"We usethequotientmapWeprove alemmaSvetawrites a"warning"We usetheinclusionmapSvetamakes agrammaticalmistakeWe assumesomethingfrom apreviousmath classWe adjoinanelementto a ringWe callsomething"free" (e.g.freemodules)We use thechineseremaindertheoremSvetawrites"Prop"We prove anoperation iswell-definedSveta writesan existsand isuniquesymbolWe do aninductiveproofWe use theisomorphismtheoremsSvetawrites"iff"We use auniversalpropertyWe provesomethingis a ringWe have aring that isnotcommutativeSvetacalls agroup"Abelian"

Algebra Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. We do a proof by contradiction
  2. Sveta writes a "slogan"
  3. Sveta writes the isomorphism symbol
  4. Sveta makes a math mistake
  5. Sveta writes "Theorem"
  6. We use the quotient map
  7. We prove a lemma
  8. Sveta writes a "warning"
  9. We use the inclusion map
  10. Sveta makes a grammatical mistake
  11. We assume something from a previous math class
  12. We adjoin an element to a ring
  13. We call something "free" (e.g. free modules)
  14. We use the chinese remainder theorem
  15. Sveta writes "Prop"
  16. We prove an operation is well-defined
  17. Sveta writes an exists and is unique symbol
  18. We do an inductive proof
  19. We use the isomorphism theorems
  20. Sveta writes "iff"
  21. We use a universal property
  22. We prove something is a ring
  23. We have a ring that is not commutative
  24. Sveta calls a group "Abelian"