We prove anoperation iswell-definedSvetawrites"Prop"We callsomething"free" (e.g.freemodules)We do aninductiveproofSveta writestheisomorphismsymbolWe use auniversalpropertyWe provesomethingis a ringSvetawrites"Theorem"Svetawrites a"warning"Sveta writesan existsand isuniquesymbolWe usethequotientmapWeprove alemmaWe have aring that isnotcommutativeWe usetheinclusionmapSvetamakes agrammaticalmistakeWe do aproof bycontradictionSvetamakes amathmistakeSvetacalls agroup"Abelian"Svetawrites a"slogan"We use theisomorphismtheoremsWe assumesomethingfrom apreviousmath classSvetawrites"iff"We adjoinanelementto a ringWe use thechineseremaindertheoremWe prove anoperation iswell-definedSvetawrites"Prop"We callsomething"free" (e.g.freemodules)We do aninductiveproofSveta writestheisomorphismsymbolWe use auniversalpropertyWe provesomethingis a ringSvetawrites"Theorem"Svetawrites a"warning"Sveta writesan existsand isuniquesymbolWe usethequotientmapWeprove alemmaWe have aring that isnotcommutativeWe usetheinclusionmapSvetamakes agrammaticalmistakeWe do aproof bycontradictionSvetamakes amathmistakeSvetacalls agroup"Abelian"Svetawrites a"slogan"We use theisomorphismtheoremsWe assumesomethingfrom apreviousmath classSvetawrites"iff"We adjoinanelementto a ringWe use thechineseremaindertheorem

Algebra Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. We prove an operation is well-defined
  2. Sveta writes "Prop"
  3. We call something "free" (e.g. free modules)
  4. We do an inductive proof
  5. Sveta writes the isomorphism symbol
  6. We use a universal property
  7. We prove something is a ring
  8. Sveta writes "Theorem"
  9. Sveta writes a "warning"
  10. Sveta writes an exists and is unique symbol
  11. We use the quotient map
  12. We prove a lemma
  13. We have a ring that is not commutative
  14. We use the inclusion map
  15. Sveta makes a grammatical mistake
  16. We do a proof by contradiction
  17. Sveta makes a math mistake
  18. Sveta calls a group "Abelian"
  19. Sveta writes a "slogan"
  20. We use the isomorphism theorems
  21. We assume something from a previous math class
  22. Sveta writes "iff"
  23. We adjoin an element to a ring
  24. We use the chinese remainder theorem