We have aring that isnotcommutativeSvetawrites"Prop"We assumesomethingfrom apreviousmath classWe use thechineseremaindertheoremWeprove alemmaSvetawrites a"slogan"We use theisomorphismtheoremsSvetamakes amathmistakeWe do aninductiveproofWe callsomething"free" (e.g.freemodules)Sveta writesan existsand isuniquesymbolWe provesomethingis a ringSvetawrites"iff"We prove anoperation iswell-definedSvetawrites a"warning"Svetamakes agrammaticalmistakeWe usethequotientmapWe do aproof bycontradictionWe use auniversalpropertySvetawrites"Theorem"Sveta writestheisomorphismsymbolSvetacalls agroup"Abelian"We adjoinanelementto a ringWe usetheinclusionmapWe have aring that isnotcommutativeSvetawrites"Prop"We assumesomethingfrom apreviousmath classWe use thechineseremaindertheoremWeprove alemmaSvetawrites a"slogan"We use theisomorphismtheoremsSvetamakes amathmistakeWe do aninductiveproofWe callsomething"free" (e.g.freemodules)Sveta writesan existsand isuniquesymbolWe provesomethingis a ringSvetawrites"iff"We prove anoperation iswell-definedSvetawrites a"warning"Svetamakes agrammaticalmistakeWe usethequotientmapWe do aproof bycontradictionWe use auniversalpropertySvetawrites"Theorem"Sveta writestheisomorphismsymbolSvetacalls agroup"Abelian"We adjoinanelementto a ringWe usetheinclusionmap

Algebra Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. We have a ring that is not commutative
  2. Sveta writes "Prop"
  3. We assume something from a previous math class
  4. We use the chinese remainder theorem
  5. We prove a lemma
  6. Sveta writes a "slogan"
  7. We use the isomorphism theorems
  8. Sveta makes a math mistake
  9. We do an inductive proof
  10. We call something "free" (e.g. free modules)
  11. Sveta writes an exists and is unique symbol
  12. We prove something is a ring
  13. Sveta writes "iff"
  14. We prove an operation is well-defined
  15. Sveta writes a "warning"
  16. Sveta makes a grammatical mistake
  17. We use the quotient map
  18. We do a proof by contradiction
  19. We use a universal property
  20. Sveta writes "Theorem"
  21. Sveta writes the isomorphism symbol
  22. Sveta calls a group "Abelian"
  23. We adjoin an element to a ring
  24. We use the inclusion map