Use 1stIsomThmProvesurjectivityUse the3rd SylowThmSvetawrites"Slogan"∃!Svetawrites"EXR" inredAdjoinx to aringSay that oneelementdividesanotherProve agroup isAbelianProve abiconditionalProveinjectivityTake adirectsumFindcounterexampleProvekernel= 0Sveta writesthe symbolfor propersubsetProvesomethingis torsion-freeSveta says"finitelygenerated"Say thatZorn'sLemma islogically ACSvetagivesexample#0Svetawrites "R-module"Prove agroup isnotAbelianDefine agroupactionProve agroup iscyclicSvetamentionsthat we onlywork withcomm. ringsUse 1stIsomThmProvesurjectivityUse the3rd SylowThmSvetawrites"Slogan"∃!Svetawrites"EXR" inredAdjoinx to aringSay that oneelementdividesanotherProve agroup isAbelianProve abiconditionalProveinjectivityTake adirectsumFindcounterexampleProvekernel= 0Sveta writesthe symbolfor propersubsetProvesomethingis torsion-freeSveta says"finitelygenerated"Say thatZorn'sLemma islogically ACSvetagivesexample#0Svetawrites "R-module"Prove agroup isnotAbelianDefine agroupactionProve agroup iscyclicSvetamentionsthat we onlywork withcomm. rings

We Love Algebra <3 - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. Use 1st Isom Thm
  2. Prove surjectivity
  3. Use the 3rd Sylow Thm
  4. Sveta writes "Slogan"
  5. ∃!
  6. Sveta writes "EXR" in red
  7. Adjoin x to a ring
  8. Say that one element divides another
  9. Prove a group is Abelian
  10. Prove a biconditional
  11. Prove injectivity
  12. Take a direct sum
  13. Find counterexample
  14. Prove kernel = 0
  15. Sveta writes the symbol for proper subset
  16. Prove something is torsion-free
  17. Sveta says "finitely generated"
  18. Say that Zorn's Lemma is logically AC
  19. Sveta gives example #0
  20. Sveta writes "R-module"
  21. Prove a group is not Abelian
  22. Define a group action
  23. Prove a group is cyclic
  24. Sveta mentions that we only work with comm. rings