Provekernel= 0Prove agroup iscyclicSvetagivesexample#0Say that oneelementdividesanotherDefine agroupactionTake adirectsumProve agroup isAbelianAdjoinx to aringSveta says"finitelygenerated"Use the3rd SylowThmSvetawrites"Slogan"Svetawrites"EXR" inredProve agroup isnotAbelianProveinjectivityUse 1stIsomThmProvesurjectivitySveta writesthe symbolfor propersubsetFindcounterexampleSvetamentionsthat we onlywork withcomm. ringsProvesomethingis torsion-freeSvetawrites "R-module"∃!Prove abiconditionalSay thatZorn'sLemma islogically ACProvekernel= 0Prove agroup iscyclicSvetagivesexample#0Say that oneelementdividesanotherDefine agroupactionTake adirectsumProve agroup isAbelianAdjoinx to aringSveta says"finitelygenerated"Use the3rd SylowThmSvetawrites"Slogan"Svetawrites"EXR" inredProve agroup isnotAbelianProveinjectivityUse 1stIsomThmProvesurjectivitySveta writesthe symbolfor propersubsetFindcounterexampleSvetamentionsthat we onlywork withcomm. ringsProvesomethingis torsion-freeSvetawrites "R-module"∃!Prove abiconditionalSay thatZorn'sLemma islogically AC

We Love Algebra <3 - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. Prove kernel = 0
  2. Prove a group is cyclic
  3. Sveta gives example #0
  4. Say that one element divides another
  5. Define a group action
  6. Take a direct sum
  7. Prove a group is Abelian
  8. Adjoin x to a ring
  9. Sveta says "finitely generated"
  10. Use the 3rd Sylow Thm
  11. Sveta writes "Slogan"
  12. Sveta writes "EXR" in red
  13. Prove a group is not Abelian
  14. Prove injectivity
  15. Use 1st Isom Thm
  16. Prove surjectivity
  17. Sveta writes the symbol for proper subset
  18. Find counterexample
  19. Sveta mentions that we only work with comm. rings
  20. Prove something is torsion-free
  21. Sveta writes "R-module"
  22. ∃!
  23. Prove a biconditional
  24. Say that Zorn's Lemma is logically AC