Cconvolutionfeatureextractiondropoutnullifysomeneuronsigmoidactivationfunctiondeepnetworkmultiplelayersunsupervisedclusteringactivationfunctionneuronactivatecnnneworkarchitecturefilteroutputchannel3Dinputimagestridenumberof pixelsshiftsnodeneuronfeaturemapconvolutionallayerpaddingouterlayerflatten1Dlabelsupervisedsupervisedregressiondensefullyconnectedlstmsequencepredictionpoolingsizereducerelunegativevaluesenvironmentreinforcementkernelsize ofconvolutionalfiltersupervisedcnnunlabeledCconvolutionfeatureextractiondropoutnullifysomeneuronsigmoidactivationfunctiondeepnetworkmultiplelayersunsupervisedclusteringactivationfunctionneuronactivatecnnneworkarchitecturefilteroutputchannel3Dinputimagestridenumberof pixelsshiftsnodeneuronfeaturemapconvolutionallayerpaddingouterlayerflatten1Dlabelsupervisedsupervisedregressiondensefullyconnectedlstmsequencepredictionpoolingsizereducerelunegativevaluesenvironmentreinforcementkernelsize ofconvolutionalfiltersupervisedcnnunlabeled

CNN - Call List

(Print) Use this randomly generated list as your call list when playing the game. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
B B
2
I I
3
B B
4
N N
5
G G
6
G G
7
I I
8
G G
9
B B
10
B B
11
O O
12
O O
13
N N
14
O O
15
B B
16
O O
17
I I
18
O O
19
I I
20
G G
21
N N
22
N N
23
G G
24
I
  1. B-feature extraction
    B-Cconvolution
  2. I-nullify some neuron
    I-dropout
  3. B-activation function
    B-sigmoid
  4. N-multiple layers
    N-deep network
  5. G-clustering
    G-unsupervised
  6. G-neuron activate
    G-activation function
  7. I-nework architecture
    I-cnn
  8. G-output channel
    G-filter
  9. B-input image
    B-3D
  10. B-number of pixels shifts
    B-stride
  11. O-neuron
    O-node
  12. O-convolutional layer
    O-feature map
  13. N-outer layer
    N-padding
  14. O-1D
    O-flatten
  15. B-supervised
    B-label
  16. O-regression
    O-supervised
  17. I-fully connected
    I-dense
  18. O-sequence prediction
    O-lstm
  19. I-size reduce
    I-pooling
  20. G-negative values
    G-relu
  21. N-reinforcement
    N-environment
  22. N-size of convolutional filter
    N-kernel
  23. G-cnn
    G-supervised
  24. I-unlabeled