Cconvolutionfeatureextractionlabelsuperviseddropoutnullifysomeneuronenvironmentreinforcementsigmoidactivationfunctiondensefullyconnectedpaddingouterlayerfilteroutputchannelunlabeledunsupervisedclusteringactivationfunctionneuronactivaterelunegativevaluessupervisedcnn3Dinputimageflatten1Dpoolingsizereducelstmsequencepredictionfeaturemapconvolutionallayerstridenumberof pixelsshiftsbrainbiologicalneuralnetworkdeepnetworkmultiplelayerscnnneworkarchitecturenodeneuronkernelsize ofconvolutionalfilterCconvolutionfeatureextractionlabelsuperviseddropoutnullifysomeneuronenvironmentreinforcementsigmoidactivationfunctiondensefullyconnectedpaddingouterlayerfilteroutputchannelunlabeledunsupervisedclusteringactivationfunctionneuronactivaterelunegativevaluessupervisedcnn3Dinputimageflatten1Dpoolingsizereducelstmsequencepredictionfeaturemapconvolutionallayerstridenumberof pixelsshiftsbrainbiologicalneuralnetworkdeepnetworkmultiplelayerscnnneworkarchitecturenodeneuronkernelsize ofconvolutionalfilter

CNN - Call List

(Print) Use this randomly generated list as your call list when playing the game. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
B B
2
B B
3
I I
4
N N
5
B B
6
I I
7
N N
8
G G
9
I
10
G G
11
G G
12
G G
13
G G
14
B B
15
O O
16
I I
17
O O
18
O O
19
B B
20
O O
21
N N
22
I I
23
O O
24
N N
  1. B-feature extraction
    B-Cconvolution
  2. B-supervised
    B-label
  3. I-nullify some neuron
    I-dropout
  4. N-reinforcement
    N-environment
  5. B-activation function
    B-sigmoid
  6. I-fully connected
    I-dense
  7. N-outer layer
    N-padding
  8. G-output channel
    G-filter
  9. I-unlabeled
  10. G-clustering
    G-unsupervised
  11. G-neuron activate
    G-activation function
  12. G-negative values
    G-relu
  13. G-cnn
    G-supervised
  14. B-input image
    B-3D
  15. O-1D
    O-flatten
  16. I-size reduce
    I-pooling
  17. O-sequence prediction
    O-lstm
  18. O-convolutional layer
    O-feature map
  19. B-number of pixels shifts
    B-stride
  20. O-biological neural network
    O-brain
  21. N-multiple layers
    N-deep network
  22. I-nework architecture
    I-cnn
  23. O-neuron
    O-node
  24. N-size of convolutional filter
    N-kernel