Predictinghit songsReal-timetimbralmapping forsynthesizerpercussionperformanceNeo-RiemannianTheory togeneratesoundtracks forfilm and videogamesGuitar TablatureGeneration,Symbolic MusicGenerationEEG,neuroscienceresearch intomusical BCIsFinding waysaround thesymmetries thatbreakdifferentiablesignal processingAppliedmusiccognitionMusicEnsembleSeparationSelf-supervisedlearning inAudioFingerprintingMulti modaluser-adaptation forAutomaticMusic TaggingGenerativeMusicExperimentationand prototypingwith embeddedAI for DMIdesignUsing self-supervisedML toimprove MIRtasksControllingand designingaudio effectswith machinelearningTimbreTransferLearn latentrepresentationsof musicsamplesML to controlphysical modelsfor synthesis,esp. extendedvocal techniquesInterfacingSynths withMusicalInstrumentsAutomaticmusictranscriptionMusic, datascience,gender andmediastudiesExpressiveperformancemodelling formusicgenerationsystemsExtendedRealityMusicalInstrumentsHCI, specialisedon the designand evaluationof tools to helpcomposersGenerativemodelling ofpianoperformance"Singingvoice"Reading sheetmusiccomputationallyMusic StyleTransfer,ExpressivePerformanceRenderingReal-timegesturedescription fordigital musicalinstrumentsRepresentationLearningIntelligentmusicproductionCreativitySupport Toolsfor DJing andElectronicMusicProductionExtremeVocal EffectsSynthesisUsing MLand DSPAudioeditingEmotion infilm music,compositiontechniquesPersonalSoundZoneAMT (audio-to-score) forjazzensemblesPredictinghit songsReal-timetimbralmapping forsynthesizerpercussionperformanceNeo-RiemannianTheory togeneratesoundtracks forfilm and videogamesGuitar TablatureGeneration,Symbolic MusicGenerationEEG,neuroscienceresearch intomusical BCIsFinding waysaround thesymmetries thatbreakdifferentiablesignal processingAppliedmusiccognitionMusicEnsembleSeparationSelf-supervisedlearning inAudioFingerprintingMulti modaluser-adaptation forAutomaticMusic TaggingGenerativeMusicExperimentationand prototypingwith embeddedAI for DMIdesignUsing self-supervisedML toimprove MIRtasksControllingand designingaudio effectswith machinelearningTimbreTransferLearn latentrepresentationsof musicsamplesML to controlphysical modelsfor synthesis,esp. extendedvocal techniquesInterfacingSynths withMusicalInstrumentsAutomaticmusictranscriptionMusic, datascience,gender andmediastudiesExpressiveperformancemodelling formusicgenerationsystemsExtendedRealityMusicalInstrumentsHCI, specialisedon the designand evaluationof tools to helpcomposersGenerativemodelling ofpianoperformance"Singingvoice"Reading sheetmusiccomputationallyMusic StyleTransfer,ExpressivePerformanceRenderingReal-timegesturedescription fordigital musicalinstrumentsRepresentationLearningIntelligentmusicproductionCreativitySupport Toolsfor DJing andElectronicMusicProductionExtremeVocal EffectsSynthesisUsing MLand DSPAudioeditingEmotion infilm music,compositiontechniquesPersonalSoundZoneAMT (audio-to-score) forjazzensembles

AIM Summer Retreat Bingo - Professional - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  1. Predicting hit songs
  2. Real-time timbral mapping for synthesizer percussion performance
  3. Neo-Riemannian Theory to generate soundtracks for film and video games
  4. Guitar Tablature Generation, Symbolic Music Generation
  5. EEG, neuroscience research into musical BCIs
  6. Finding ways around the symmetries that break differentiable signal processing
  7. Applied music cognition
  8. Music Ensemble Separation
  9. Self-supervised learning in Audio Fingerprinting
  10. Multi modal user-adaptation for Automatic Music Tagging
  11. Generative Music
  12. Experimentation and prototyping with embedded AI for DMI design
  13. Using self-supervised ML to improve MIR tasks
  14. Controlling and designing audio effects with machine learning
  15. Timbre Transfer
  16. Learn latent representations of music samples
  17. ML to control physical models for synthesis, esp. extended vocal techniques
  18. Interfacing Synths with Musical Instruments
  19. Automatic music transcription
  20. Music, data science, gender and media studies
  21. Expressive performance modelling for music generation systems
  22. Extended Reality Musical Instruments
  23. HCI, specialised on the design and evaluation of tools to help composers
  24. Generative modelling of piano performance
  25. "Singing voice"
  26. Reading sheet music computationally
  27. Music Style Transfer, Expressive Performance Rendering
  28. Real-time gesture description for digital musical instruments
  29. Representation Learning
  30. Intelligent music production
  31. Creativity Support Tools for DJing and Electronic Music Production
  32. Extreme Vocal Effects Synthesis Using ML and DSP
  33. Audio editing
  34. Emotion in film music, composition techniques
  35. Personal Sound Zone
  36. AMT (audio-to-score) for jazz ensembles