Number of Terms Nonnegative Integers (2-3x) ∛2x -√3 Quadratic 0≤x≤2 Constant 24x^2- 28x-20 Variable Binomial 4w^4- 25 Nonnegative Cubic Terminates b≤6 and (- ∞,6] 4 Degree c≥0 and [0,∞) y^3+4y^2- 3y-12 |c+3| ≥12 Absolute Value Monomial y^3+3y^2+3y+1 Unbounded Trinomial Radicand . 8x^3- y^3-12x^2 y+6xy^2 m^2- j^2- 8m+16 5x√3x Standard -x^4 True -4x- 20 Bounded Like Radicals 36-y 24y+7 Divide Linear -7<d<0 and (-7,0) -3<x≤5 2∛3 240y^3+96y^2 p-q a^2+2ab+b^2 {1, 2, 3, 4, 5, ....} 16x^3+58x^2+22 -18z^2+6z Index Rational x^2+z^2+2xz- 1 -3<x 7 {... -3, -2, -1, 0, 1, 2, 3, ...} Quartic FOIL Irrational “Many” Number of Terms Nonnegative Integers (2-3x) ∛2x -√3 Quadratic 0≤x≤2 Constant 24x^2- 28x-20 Variable Binomial 4w^4- 25 Nonnegative Cubic Terminates b≤6 and (- ∞,6] 4 Degree c≥0 and [0,∞) y^3+4y^2- 3y-12 |c+3| ≥12 Absolute Value Monomial y^3+3y^2+3y+1 Unbounded Trinomial Radicand . 8x^3- y^3-12x^2 y+6xy^2 m^2- j^2- 8m+16 5x√3x Standard -x^4 True -4x- 20 Bounded Like Radicals 36-y 24y+7 Divide Linear -7<d<0 and (-7,0) -3<x≤5 2∛3 240y^3+96y^2 p-q a^2+2ab+b^2 {1, 2, 3, 4, 5, ....} 16x^3+58x^2+22 -18z^2+6z Index Rational x^2+z^2+2xz- 1 -3<x 7 {... -3, -2, -1, 0, 1, 2, 3, ...} Quartic FOIL Irrational “Many”
(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.
Number of Terms
Nonnegative Integers
(2-3x) ∛2x
-√3
Quadratic
0≤x≤2
Constant
24x^2-28x-20
Variable
Binomial
4w^4-25
Nonnegative
Cubic
Terminates
b≤6 and (-∞,6]
4
Degree
c≥0 and [0,∞)
y^3+4y^2-3y-12
|c+3|≥12
Absolute Value
Monomial
y^3+3y^2+3y+1
Unbounded
Trinomial
Radicand
. 8x^3-y^3-12x^2 y+6xy^2
m^2-j^2-8m+16
5x√3x
Standard
-x^4
True
-4x-20
Bounded
Like Radicals
36-y
24y+7
Divide
Linear
-7<d<0 and (-7,0)
-3<x≤5
2∛3
240y^3+96y^2
p-q
a^2+2ab+b^2
{1, 2, 3, 4, 5, ....}
16x^3+58x^2+22
-18z^2+6z
Index
Rational
x^2+z^2+2xz-1
-3<x
7
{... -3, -2, -1, 0, 1, 2, 3, ...}
Quartic
FOIL
Irrational
“Many”