Min:(0, 15) (2, 0)and(12, 0)(-3,0) MaximumProfit =$605$480 A, D,GTrueNox + y <8x - y > 6The feasibleregion iswhere all theshadingoverlaps.If a point isin thefeasibleregion, it is asolution.D25x +12y Maximize5 pots40plates NoSolutionx + y < 50x < 24y < 40 FalseA system ofinequalitiesinvolvesshadedregions.Step 1: Graph the lines Step 2: Test points tofind where to shade Step 3: Identify wherethe shaded regionsoverlap(2,6)AMax:(5, 0)Quadrant1x > 0y > 0A, B,C, DMin:(0, 15) (2, 0)and(12, 0)(-3,0) MaximumProfit =$605$480A, D,GTrueNox + y <8x - y > 6The feasibleregion iswhere all theshadingoverlaps.If a point isin thefeasibleregion, it is asolution.D25x +12y Maximize5 pots40plates NoSolutionx + y < 50x < 24y < 40 FalseA system ofinequalitiesinvolvesshadedregions.Step 1: Graph the lines Step 2: Test points tofind where to shade Step 3: Identify wherethe shaded regionsoverlap(2,6)AMax:(5, 0)Quadrant1x > 0y > 0A, B,C, D

Algebra II Review - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
  1. Min: (0, 15)
  2. (2, 0) and (12, 0)
  3. (-3, 0)
  4. Maximum Profit = $605
  5. $480
  6. A, D, G
  7. True
  8. No
  9. x + y < 8 x - y > 6
  10. The feasible region is where all the shading overlaps.
  11. If a point is in the feasible region, it is a solution.
  12. D
  13. 25x +12y Maximize
  14. 5 pots 40 plates
  15. No Solution
  16. x + y < 50 x < 24 y < 40
  17. False
  18. A system of inequalities involves shaded regions.
  19. Step 1: Graph the lines Step 2: Test points to find where to shade Step 3: Identify where the shaded regions overlap
  20. (2, 6)
  21. A
  22. Max: (5, 0)
  23. Quadrant 1 x > 0 y > 0
  24. A, B, C, D