Direct vs.indirectcostsResearchcycleDatastoragecosts“Unfundedmandate”“Datascience”“Goodenough”InstitutionaldataretentionpolicyCompliance“Itdepends”DatareuseDataethicsCAREResearchsoftwarePublicaccess toresearchdataInstitutionalrepositoryLong-termdatapreservationDatasharingDatarepositoryDatasecurityInstitutionaldatamanagementpolicyFunderrequirementsPublicaccessplansHPCDatacurationPersistentidentifiers(PIDs)FAIRIRBDataservicesworkflowReproducibilityDMSbudgetingBurdenNelsonMemoWho is goingto look at thedataanyway?AIAsked to“do morewith less”NIHPolicyCross-institutionworkinggroupResearchdatalifecycleBigDataDMSPConsultationsBudgetreduction“Understaffed”SensitivedataDirect vs.indirectcostsResearchcycleDatastoragecosts“Unfundedmandate”“Datascience”“Goodenough”InstitutionaldataretentionpolicyCompliance“Itdepends”DatareuseDataethicsCAREResearchsoftwarePublicaccess toresearchdataInstitutionalrepositoryLong-termdatapreservationDatasharingDatarepositoryDatasecurityInstitutionaldatamanagementpolicyFunderrequirementsPublicaccessplansHPCDatacurationPersistentidentifiers(PIDs)FAIRIRBDataservicesworkflowReproducibilityDMSbudgetingBurdenNelsonMemoWho is goingto look at thedataanyway?AIAsked to“do morewith less”NIHPolicyCross-institutionworkinggroupResearchdatalifecycleBigDataDMSPConsultationsBudgetreduction“Understaffed”Sensitivedata

RADS 2 Kick Off Bingo! - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
  1. Direct vs. indirect costs
  2. Research cycle
  3. Data storage costs
  4. “Unfunded mandate”
  5. “Data science”
  6. “Good enough”
  7. Institutional data retention policy
  8. Compliance
  9. “It depends”
  10. Data reuse
  11. Data ethics
  12. CARE
  13. Research software
  14. Public access to research data
  15. Institutional repository
  16. Long-term data preservation
  17. Data sharing
  18. Data repository
  19. Data security
  20. Institutional data management policy
  21. Funder requirements
  22. Public access plans
  23. HPC
  24. Data curation
  25. Persistent identifiers (PIDs)
  26. FAIR
  27. IRB
  28. Data services workflow
  29. Reproducibility
  30. DMS budgeting
  31. Burden
  32. Nelson Memo
  33. Who is going to look at the data anyway?
  34. AI
  35. Asked to “do more with less”
  36. NIH Policy
  37. Cross-institution working group
  38. Research data lifecycle
  39. Big Data
  40. DMSP Consultations
  41. Budget reduction
  42. “Understaffed”
  43. Sensitive data