Degree 5polynomialMostColourful2 x-interceptsA LocalMinimumwith both xand ynegativeUses theQuadraticFormula to findthe CriticalNumbersHas a LocalMaximumwith a y-value greaterthan 100A LocalExtremaat theOriginMostInterestingTitleFunniestDesign2NegativeCriticalNumbers3 x-interceptsAn InflectionPoint withboth x and ynegative3InflectionPointsDegree 4polynomialUses theChain Ruleto find theDerivative2 PositiveCriticalNumbers2 LocalMaximumsTwo distinctConcaveUp IntervalsA CriticalNumber thatis NOT aLocalExtremaAn InflectionPoint withboth x and ypositiveOddSymmetryA LocalMinimumon the x-axisEvenSymmetryAnInflectionPoint onthe x-axisA LocalMaximumwith both xand ypositiveHas apositive,negative andzero x-interceptTwodistinctDecreasingIntervals2InflectionPointsDegree 5polynomialMostColourful2 x-interceptsA LocalMinimumwith both xand ynegativeUses theQuadraticFormula to findthe CriticalNumbersHas a LocalMaximumwith a y-value greaterthan 100A LocalExtremaat theOriginMostInterestingTitleFunniestDesign2NegativeCriticalNumbers3 x-interceptsAn InflectionPoint withboth x and ynegative3InflectionPointsDegree 4polynomialUses theChain Ruleto find theDerivative2 PositiveCriticalNumbers2 LocalMaximumsTwo distinctConcaveUp IntervalsA CriticalNumber thatis NOT aLocalExtremaAn InflectionPoint withboth x and ypositiveOddSymmetryA LocalMinimumon the x-axisEvenSymmetryAnInflectionPoint onthe x-axisA LocalMaximumwith both xand ypositiveHas apositive,negative andzero x-interceptTwodistinctDecreasingIntervals2InflectionPoints

Calculus Curve Sketching Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
  1. Degree 5 polynomial
  2. Most Colourful
  3. 2 x-intercepts
  4. A Local Minimum with both x and y negative
  5. Uses the Quadratic Formula to find the Critical Numbers
  6. Has a Local Maximum with a y-value greater than 100
  7. A Local Extrema at the Origin
  8. Most Interesting Title
  9. Funniest Design
  10. 2 Negative Critical Numbers
  11. 3 x-intercepts
  12. An Inflection Point with both x and y negative
  13. 3 Inflection Points
  14. Degree 4 polynomial
  15. Uses the Chain Rule to find the Derivative
  16. 2 Positive Critical Numbers
  17. 2 Local Maximums
  18. Two distinct Concave Up Intervals
  19. A Critical Number that is NOT a Local Extrema
  20. An Inflection Point with both x and y positive
  21. Odd Symmetry
  22. A Local Minimum on the x-axis
  23. Even Symmetry
  24. An Inflection Point on the x-axis
  25. A Local Maximum with both x and y positive
  26. Has a positive, negative and zero x-intercept
  27. Two distinct Decreasing Intervals
  28. 2 Inflection Points