A LocalExtremaat theOriginAn InflectionPoint withboth x and ynegativeMostColourfulMostInterestingTitleDegree 5polynomial2 PositiveCriticalNumbersUses theQuadraticFormula to findthe CriticalNumbersOddSymmetryA LocalMinimumon the x-axisA LocalMaximumwith both xand ypositiveAn InflectionPoint withboth x and ypositiveA LocalMinimumwith both xand ynegativeTwodistinctDecreasingIntervals2NegativeCriticalNumbersHas a LocalMaximumwith a y-value greaterthan 1002 x-interceptsAnInflectionPoint onthe x-axis2InflectionPointsA CriticalNumber thatis NOT aLocalExtrema2 LocalMaximumsDegree 4polynomialUses theChain Ruleto find theDerivativeFunniestDesignEvenSymmetryTwo distinctConcaveUp Intervals3InflectionPoints3 x-interceptsHas apositive,negative andzero x-interceptA LocalExtremaat theOriginAn InflectionPoint withboth x and ynegativeMostColourfulMostInterestingTitleDegree 5polynomial2 PositiveCriticalNumbersUses theQuadraticFormula to findthe CriticalNumbersOddSymmetryA LocalMinimumon the x-axisA LocalMaximumwith both xand ypositiveAn InflectionPoint withboth x and ypositiveA LocalMinimumwith both xand ynegativeTwodistinctDecreasingIntervals2NegativeCriticalNumbersHas a LocalMaximumwith a y-value greaterthan 1002 x-interceptsAnInflectionPoint onthe x-axis2InflectionPointsA CriticalNumber thatis NOT aLocalExtrema2 LocalMaximumsDegree 4polynomialUses theChain Ruleto find theDerivativeFunniestDesignEvenSymmetryTwo distinctConcaveUp Intervals3InflectionPoints3 x-interceptsHas apositive,negative andzero x-intercept

Calculus Curve Sketching BINGO - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
  1. A Local Extrema at the Origin
  2. An Inflection Point with both x and y negative
  3. Most Colourful
  4. Most Interesting Title
  5. Degree 5 polynomial
  6. 2 Positive Critical Numbers
  7. Uses the Quadratic Formula to find the Critical Numbers
  8. Odd Symmetry
  9. A Local Minimum on the x-axis
  10. A Local Maximum with both x and y positive
  11. An Inflection Point with both x and y positive
  12. A Local Minimum with both x and y negative
  13. Two distinct Decreasing Intervals
  14. 2 Negative Critical Numbers
  15. Has a Local Maximum with a y-value greater than 100
  16. 2 x-intercepts
  17. An Inflection Point on the x-axis
  18. 2 Inflection Points
  19. A Critical Number that is NOT a Local Extrema
  20. 2 Local Maximums
  21. Degree 4 polynomial
  22. Uses the Chain Rule to find the Derivative
  23. Funniest Design
  24. Even Symmetry
  25. Two distinct Concave Up Intervals
  26. 3 Inflection Points
  27. 3 x-intercepts
  28. Has a positive, negative and zero x-intercept