AIAgentCostFunctionStateSpaceUtilityFunctionDecisionTreeReinforcementLearningComputationalEfficiencyStateRepresentationExplorationSearchStrategyExploitationArtificialIntelligenceBreadth-FirstSearchProblemFormulationProblem-SolvingAITransitionModelAutomatedReasoningA*AlgorithmPathfindingGameTheoryPlanningAlgorithmOptimizationSearchAlgorithmConstraintSatisfactionMachineLearningConstraintsGoalStateActionsHeuristicFunctionDecision-MakingPathCostDepth-FirstSearchGoalRecognitionInitialStateAlgorithmicComplexityAIAgentCostFunctionStateSpaceUtilityFunctionDecisionTreeReinforcementLearningComputationalEfficiencyStateRepresentationExplorationSearchStrategyExploitationArtificialIntelligenceBreadth-FirstSearchProblemFormulationProblem-SolvingAITransitionModelAutomatedReasoningA*AlgorithmPathfindingGameTheoryPlanningAlgorithmOptimizationSearchAlgorithmConstraintSatisfactionMachineLearningConstraintsGoalStateActionsHeuristicFunctionDecision-MakingPathCostDepth-FirstSearchGoalRecognitionInitialStateAlgorithmicComplexity

Components of Problem Formulation - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
  1. AI Agent
  2. Cost Function
  3. State Space
  4. Utility Function
  5. Decision Tree
  6. Reinforcement Learning
  7. Computational Efficiency
  8. State Representation
  9. Exploration
  10. Search Strategy
  11. Exploitation
  12. Artificial Intelligence
  13. Breadth-First Search
  14. Problem Formulation
  15. Problem-Solving AI
  16. Transition Model
  17. Automated Reasoning
  18. A* Algorithm
  19. Pathfinding
  20. Game Theory
  21. Planning Algorithm
  22. Optimization
  23. Search Algorithm
  24. Constraint Satisfaction
  25. Machine Learning
  26. Constraints
  27. Goal State
  28. Actions
  29. Heuristic Function
  30. Decision-Making
  31. Path Cost
  32. Depth-First Search
  33. Goal Recognition
  34. Initial State
  35. Algorithmic Complexity