ReinforcementlearningMultinomiallogitEndogenousdemandEntropymaximizationMobility-on-DemandMicrotransitNovelapproachOptimizationReal-timeoperationDiscreteoptimizationMultiplestakeholdersBehavior-awarenessEmpiricalvalidationInterdisciplinarycollaborationTransportationNetworkCompaniesMobility-as-a-ServiceEquilibriumBenchmarknetworksStrategicinteractionsAggressivequestionRobustparameterestimatesMarkovdecisionprocessReal-worlddataFutureworkSupply-demandintegrationGraph withhandwrittenfontFlowconservationPolicyimplicationsHierarchicallogitScalablesolutionGoodfor allAutomatedcalibrationConvexprogramThat's agreatquestionRidepoolingNetworkcomplexitySmartmobilityConnectedAutonomousVehiclesProof ofconceptSlacktimeLatecommitteememberReinforcementlearningMultinomiallogitEndogenousdemandEntropymaximizationMobility-on-DemandMicrotransitNovelapproachOptimizationReal-timeoperationDiscreteoptimizationMultiplestakeholdersBehavior-awarenessEmpiricalvalidationInterdisciplinarycollaborationTransportationNetworkCompaniesMobility-as-a-ServiceEquilibriumBenchmarknetworksStrategicinteractionsAggressivequestionRobustparameterestimatesMarkovdecisionprocessReal-worlddataFutureworkSupply-demandintegrationGraph withhandwrittenfontFlowconservationPolicyimplicationsHierarchicallogitScalablesolutionGoodfor allAutomatedcalibrationConvexprogramThat's agreatquestionRidepoolingNetworkcomplexitySmartmobilityConnectedAutonomousVehiclesProof ofconceptSlacktimeLatecommitteemember

Youngseo's B Exam - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
  1. Reinforcement learning
  2. Multinomial logit
  3. Endogenous demand
  4. Entropy maximization
  5. Mobility-on-Demand
  6. Microtransit
  7. Novel approach
  8. Optimization
  9. Real-time operation
  10. Discrete optimization
  11. Multiple stakeholders
  12. Behavior-awareness
  13. Empirical validation
  14. Interdisciplinary collaboration
  15. Transportation Network Companies
  16. Mobility-as-a-Service
  17. Equilibrium
  18. Benchmark networks
  19. Strategic interactions
  20. Aggressive question
  21. Robust parameter estimates
  22. Markov decision process
  23. Real-world data
  24. Future work
  25. Supply-demand integration
  26. Graph with handwritten font
  27. Flow conservation
  28. Policy implications
  29. Hierarchical logit
  30. Scalable solution
  31. Good for all
  32. Automated calibration
  33. Convex program
  34. That's a great question
  35. Ride pooling
  36. Network complexity
  37. Smart mobility
  38. Connected Autonomous Vehicles
  39. Proof of concept
  40. Slack time
  41. Late committee member