Carrying Out aTest for theDifference ofTwo PopulationProportionsCarrying Out aChi-SquareTest forHomogeneity orIndependencePotentialErrors WhenPerformingTestsRepresentinga CategoricalVariable withGraphsJustifying aClaim About aPopulationMean Based ona ConfidenceIntervalConstructinga ConfidenceInterval for aPopulationProportionSetting Up aTest for theSlope of aRegressionModelDescribing theDistribution ofa QuantitativeVariableSamplingDistributionsfor SampleMeansResidualsSummaryStatistics foraQuantitativeVariableCombiningRandomVariablesConfidenceIntervals forthe Slope ofa RegressionModelFree!ConfidenceIntervals forthe Differenceof TwoProportionsRepresentingTwoCategoricalVariablesSetting Upa Test for aPopulationMeanSamplingDistributionsfor SampleProportionsComparingDistributionsof aQuantitativeVariableTheNormalDistributionTheGeometricDistributionLeastSquaresRegressionCarrying Outa Test for aPopulationMeanRandomSamplingand DataCollectionConditionalProbabilityJustifying a ClaimAbout theDifference of TwoMeans Based ona ConfidenceIntervalMean andStandardDeviation ofRandomVariablesIntroductiontoExperimentalDesignInterpretingP-ValuesCarrying Out aTest for theDifference ofTwo PopulationProportionsCarrying Out aChi-SquareTest forHomogeneity orIndependencePotentialErrors WhenPerformingTestsRepresentinga CategoricalVariable withGraphsJustifying aClaim About aPopulationMean Based ona ConfidenceIntervalConstructinga ConfidenceInterval for aPopulationProportionSetting Up aTest for theSlope of aRegressionModelDescribing theDistribution ofa QuantitativeVariableSamplingDistributionsfor SampleMeansResidualsSummaryStatistics foraQuantitativeVariableCombiningRandomVariablesConfidenceIntervals forthe Slope ofa RegressionModelFree!ConfidenceIntervals forthe Differenceof TwoProportionsRepresentingTwoCategoricalVariablesSetting Upa Test for aPopulationMeanSamplingDistributionsfor SampleProportionsComparingDistributionsof aQuantitativeVariableTheNormalDistributionTheGeometricDistributionLeastSquaresRegressionCarrying Outa Test for aPopulationMeanRandomSamplingand DataCollectionConditionalProbabilityJustifying a ClaimAbout theDifference of TwoMeans Based ona ConfidenceIntervalMean andStandardDeviation ofRandomVariablesIntroductiontoExperimentalDesignInterpretingP-Values

AP Stats Review - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
  1. Carrying Out a Test for the Difference of Two Population Proportions
  2. Carrying Out a Chi-Square Test for Homogeneity or Independence
  3. Potential Errors When Performing Tests
  4. Representing a Categorical Variable with Graphs
  5. Justifying a Claim About a Population Mean Based on a Confidence Interval
  6. Constructing a Confidence Interval for a Population Proportion
  7. Setting Up a Test for the Slope of a Regression Model
  8. Describing the Distribution of a Quantitative Variable
  9. Sampling Distributions for Sample Means
  10. Residuals
  11. Summary Statistics for a Quantitative Variable
  12. Combining Random Variables
  13. Confidence Intervals for the Slope of a Regression Model
  14. Free!
  15. Confidence Intervals for the Difference of Two Proportions
  16. Representing Two Categorical Variables
  17. Setting Up a Test for a Population Mean
  18. Sampling Distributions for Sample Proportions
  19. Comparing Distributions of a Quantitative Variable
  20. The Normal Distribution
  21. The Geometric Distribution
  22. Least Squares Regression
  23. Carrying Out a Test for a Population Mean
  24. Random Sampling and Data Collection
  25. Conditional Probability
  26. Justifying a Claim About the Difference of Two Means Based on a Confidence Interval
  27. Mean and Standard Deviation of Random Variables
  28. Introduction to Experimental Design
  29. Interpreting P-Values