Regressioncoefficient(b)Errorssquared sothey don’tcancelTeststatisticRepeated-measuresANOVA ↔dependentmeansY-interceptMore moneyspent withlongshoppingtimeCriterionvariablePowerCurvilinearcorrelationMultipleregressiona (Y-intercept)0.2%chance dueto randomerrorPredictedsocialskills = 46StatisticallysignificantdifferenceFalse(within-groups ≠treatmenteffect)MeanSquare= 133.06Between-groups dfF =0.36Not allmeans equal(unclearwhich differ)F muchlargerthan 1Between≈ withinwhen nullis truePopulationvarianceestimatewithin groups(S²within)Factorial-designANOVAShort: noage diff;long:youngerspend morePredictedappetite= 9Ŷ = a +b₁X₁ +b₂X₂Units changein criterionper predictorunitTrue(effect sizeindicatessize)F =1.22MeanSquareError =0.28Within-groupsdfDichotomizing:high vs lowgroupsShowsrelationpredictor↔ criterion6cellsF =30/25 =1.20Compare3+ groups(ANOVAadvantage)Rejectthe nullAge inmonthsYounger spendmore whenshort; olderspend morewhen longY –ŶRegressionEffect differsacrosslevels(interaction)Predictorvariable(X)Within-groupsvariance =16.03InteractioneffectindicatedRegressioncoefficient(b)Errorssquared sothey don’tcancelTeststatisticRepeated-measuresANOVA ↔dependentmeansY-interceptMore moneyspent withlongshoppingtimeCriterionvariablePowerCurvilinearcorrelationMultipleregressiona (Y-intercept)0.2%chance dueto randomerrorPredictedsocialskills = 46StatisticallysignificantdifferenceFalse(within-groups ≠treatmenteffect)MeanSquare= 133.06Between-groups dfF =0.36Not allmeans equal(unclearwhich differ)F muchlargerthan 1Between≈ withinwhen nullis truePopulationvarianceestimatewithin groups(S²within)Factorial-designANOVAShort: noage diff;long:youngerspend morePredictedappetite= 9Ŷ = a +b₁X₁ +b₂X₂Units changein criterionper predictorunitTrue(effect sizeindicatessize)F =1.22MeanSquareError =0.28Within-groupsdfDichotomizing:high vs lowgroupsShowsrelationpredictor↔ criterion6cellsF =30/25 =1.20Compare3+ groups(ANOVAadvantage)Rejectthe nullAge inmonthsYounger spendmore whenshort; olderspend morewhen longY –ŶRegressionEffect differsacrosslevels(interaction)Predictorvariable(X)Within-groupsvariance =16.03Interactioneffectindicated

Untitled Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
  1. Regression coefficient (b)
  2. Errors squared so they don’t cancel
  3. Test statistic
  4. Repeated-measures ANOVA ↔ dependent means
  5. Y-intercept
  6. More money spent with long shopping time
  7. Criterion variable
  8. Power
  9. Curvilinear correlation
  10. Multiple regression
  11. a (Y-intercept)
  12. 0.2% chance due to random error
  13. Predicted social skills = 46
  14. Statistically significant difference
  15. False (within-groups ≠ treatment effect)
  16. Mean Square = 133.06
  17. Between-groups df
  18. F = 0.36
  19. Not all means equal (unclear which differ)
  20. F much larger than 1
  21. Between ≈ within when null is true
  22. Population variance estimate within groups (S²within)
  23. Factorial-design ANOVA
  24. Short: no age diff; long: younger spend more
  25. Predicted appetite = 9
  26. Ŷ = a + b₁X₁ + b₂X₂
  27. Units change in criterion per predictor unit
  28. True (effect size indicates size)
  29. F = 1.22
  30. Mean Square Error = 0.28
  31. Within-groups df
  32. Dichotomizing: high vs low groups
  33. Shows relation predictor ↔ criterion
  34. 6 cells
  35. F = 30/25 = 1.20
  36. Compare 3+ groups (ANOVA advantage)
  37. Reject the null
  38. Age in months
  39. Younger spend more when short; older spend more when long
  40. Y – Ŷ
  41. Regression
  42. Effect differs across levels (interaction)
  43. Predictor variable (X)
  44. Within-groups variance = 16.03
  45. Interaction effect indicated