F =30/25 =1.20Factorial-designANOVAUnits changein criterionper predictorunitStatisticallysignificantdifferenceInteractioneffectindicatedCompare3+ groups(ANOVAadvantage)Y-interceptRepeated-measuresANOVA ↔dependentmeansShort: noage diff;long:youngerspend moreWithin-groupsvariance =16.03Showsrelationpredictor↔ criterionBetween≈ withinwhen nullis trueMeanSquare= 133.060.2%chance dueto randomerrorRejectthe nullPredictedappetite= 9CriterionvariablePowerMultipleregressionBetween-groups dfTrue(effect sizeindicatessize)False(within-groups ≠treatmenteffect)F muchlargerthan 1RegressionPredictorvariable(X)F =0.36TeststatisticDichotomizing:high vs lowgroupsY –ŶWithin-groupsdfMeanSquareError =0.286cellsa (Y-intercept)Effect differsacrosslevels(interaction)Predictedsocialskills = 46Ŷ = a +b₁X₁ +b₂X₂Younger spendmore whenshort; olderspend morewhen longErrorssquared sothey don’tcancelRegressioncoefficient(b)Age inmonthsNot allmeans equal(unclearwhich differ)CurvilinearcorrelationF =1.22Populationvarianceestimatewithin groups(S²within)More moneyspent withlongshoppingtimeF =30/25 =1.20Factorial-designANOVAUnits changein criterionper predictorunitStatisticallysignificantdifferenceInteractioneffectindicatedCompare3+ groups(ANOVAadvantage)Y-interceptRepeated-measuresANOVA ↔dependentmeansShort: noage diff;long:youngerspend moreWithin-groupsvariance =16.03Showsrelationpredictor↔ criterionBetween≈ withinwhen nullis trueMeanSquare= 133.060.2%chance dueto randomerrorRejectthe nullPredictedappetite= 9CriterionvariablePowerMultipleregressionBetween-groups dfTrue(effect sizeindicatessize)False(within-groups ≠treatmenteffect)F muchlargerthan 1RegressionPredictorvariable(X)F =0.36TeststatisticDichotomizing:high vs lowgroupsY –ŶWithin-groupsdfMeanSquareError =0.286cellsa (Y-intercept)Effect differsacrosslevels(interaction)Predictedsocialskills = 46Ŷ = a +b₁X₁ +b₂X₂Younger spendmore whenshort; olderspend morewhen longErrorssquared sothey don’tcancelRegressioncoefficient(b)Age inmonthsNot allmeans equal(unclearwhich differ)CurvilinearcorrelationF =1.22Populationvarianceestimatewithin groups(S²within)More moneyspent withlongshoppingtime

Untitled Bingo - Call List

(Print) Use this randomly generated list as your call list when playing the game. There is no need to say the BINGO column name. Place some kind of mark (like an X, a checkmark, a dot, tally mark, etc) on each cell as you announce it, to keep track. You can also cut out each item, place them in a bag and pull words from the bag.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
  1. F = 30/25 = 1.20
  2. Factorial-design ANOVA
  3. Units change in criterion per predictor unit
  4. Statistically significant difference
  5. Interaction effect indicated
  6. Compare 3+ groups (ANOVA advantage)
  7. Y-intercept
  8. Repeated-measures ANOVA ↔ dependent means
  9. Short: no age diff; long: younger spend more
  10. Within-groups variance = 16.03
  11. Shows relation predictor ↔ criterion
  12. Between ≈ within when null is true
  13. Mean Square = 133.06
  14. 0.2% chance due to random error
  15. Reject the null
  16. Predicted appetite = 9
  17. Criterion variable
  18. Power
  19. Multiple regression
  20. Between-groups df
  21. True (effect size indicates size)
  22. False (within-groups ≠ treatment effect)
  23. F much larger than 1
  24. Regression
  25. Predictor variable (X)
  26. F = 0.36
  27. Test statistic
  28. Dichotomizing: high vs low groups
  29. Y – Ŷ
  30. Within-groups df
  31. Mean Square Error = 0.28
  32. 6 cells
  33. a (Y-intercept)
  34. Effect differs across levels (interaction)
  35. Predicted social skills = 46
  36. Ŷ = a + b₁X₁ + b₂X₂
  37. Younger spend more when short; older spend more when long
  38. Errors squared so they don’t cancel
  39. Regression coefficient (b)
  40. Age in months
  41. Not all means equal (unclear which differ)
  42. Curvilinear correlation
  43. F = 1.22
  44. Population variance estimate within groups (S²within)
  45. More money spent with long shopping time